Hyaluronic Acid/Chondroitin Sulfate-Based Dynamic Thiol–Aldehyde Addition Hydrogel: An Injectable, Self-Healing, On-Demand Dissolution Wound Dressing

Author:

Johnson Melissa1ORCID,Song Rijian1,Li Yinghao1,Milne Cameron1,Lyu Jing1ORCID,Lara-Sáez Irene1ORCID,A Sigen12,Wang Wenxin13ORCID

Affiliation:

1. Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland

2. School of Medicine, Anhui University of Science and Technology, Huainan 232001, China

3. Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Frequent removal and reapplication of wound dressings can cause mechanical disruption to the healing process and significant physical discomfort for patients. In response to this challenge, a dynamic covalent hydrogel has been developed to advance wound care strategies. This system comprises aldehyde functionalized chondroitin sulfate (CS-CHO) and thiolated hyaluronic acid (HA-SH), with the distinct ability to form in situ via thiol–aldehyde addition and dissolve on-demand via the thiol–hemithioacetal exchange reaction. Although rarely reported, the dynamic covalent reaction of thiol–aldehyde addition holds great promise for the preparation of dynamic hydrogels due to its rapid reaction kinetics and easy reversible dissociation. The thiol–aldehyde addition chemistry provides the hydrogel system with highly desirable characteristics of rapid gelation (within seconds), self-healing, and on-demand dissolution (within 30 min). The mechanical and dissolution properties of the hydrogel can be easily tuned by utilizing CS-CHO materials of different aldehyde functional group contents. The chemical structure, rheology, self-healing, swelling profile, degradation rate, and cell biocompatibility of the hydrogels are characterized. The hydrogel possesses excellent biocompatibility and proves to be significant in promoting cell proliferation in vitro when compared to a commercial hydrogel (HyStem® Cell Culture Scaffold Kit). This study introduces the simple fabrication of a new dynamic hydrogel system that can serve as an ideal platform for biomedical applications, particularly in wound care treatments as an on-demand dissolvable wound dressing.

Funder

Irish Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3