Recovery of Plastics from WEEE through Green Sink–Float Treatment

Author:

Fiorente Annarita1,D’Agostino Germano1,Petrella Andrea1,Todaro Francesco1ORCID,Notarnicola Michele1

Affiliation:

1. Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy

Abstract

Increasing demand for electrical and electronic equipment results in the generation of a rapidly growing waste stream, known by the acronym WEEE (waste electrical and electronic equipment). The purpose of this study was to evaluate the effectiveness of green sink–float treatment in sorting plastic polymers typically found in WEEE (PP, ABS, PA6, PS, and PVC). Molasses, a by-product of sugar bio-refining, was added in various concentrations to water to form solutions at different densities. The methodology was initially tested on virgin polymers; later, it was applied to plastics from a WEEE treatment plant. The polymers were characterised through near infrared spectroscopy (NIRS) and Fourier-transform infrared spectroscopy (FTIRS) analyses; the detection of any additives and flame retardants was conducted using the sliding spark technology (SSS2) and scanning electron microscope (SEM—EDX). The results showed that, for plastics from WEEE, the recovery efficiency was 55.85% for PP in a solution of tap water while the remaining part of PP (44.15%) was recovered in a solution of water to which 90% molasses was added. Furthermore, 100% recovery efficiency was obtained for PS and 93.73% for ABS in a solution of tap water with the addition of 10% w/v molasses. A recovery efficiency of 100% was obtained for PVC and 100% for PA6 in a solution consisting solely of molasses.

Publisher

MDPI AG

Reference39 articles.

1. (2024, May 14). Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE). Available online: http://data.europa.eu/eli/dir/2012/19/oj.

2. Kaya, M. (2018). Current WEEE Recycling Solutions. Waste Electrical and Electronic Equipment Recycling, Woodhead Publishing.

3. Baldé, C.P., Kuehr, R., Yamamoto, T., McDonald, R., D’Angelo, E., Althaf, S., Bel, G., Deubzer, O., Fernandez-Cubillo, E., and Forti, V. (2024). Michelle Wagner Global E-Waste Monitor 2024, International Telecommunication Union (ITU) and United Nations Institute for Training and Research (UNITAR).

4. Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries;Ibanescu;Waste Manag.,2018

5. Kuehr, R. (2019). E-Waste Seen from a Global Perspective. Waste Electrical and Electronic Equipment (WEEE) Handbook, Woodhead Publishing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3