Investigation on Anti-Fuel Erosion Performance of Sasobit/SBS-Modified Asphalt and Its Mixtures

Author:

Wu Yongkang1,Chen Meizhu1,Jiang Qi1ORCID,Zhang Jianwei1ORCID,Fan Yansong1,He Jun1

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

The fuel leakage of fuel vehicles will exacerbate the occurrence of distresses on asphalt pavements, including peeling, chipping and potholes, especially under the synergistic effect of traffic load and environment. In this research, Sasobit, which is commonly used as a warm agent in asphalt, is selected as the anti-fuel erosion agent and incorporated into SBS-modified asphalt and its mixtures. Diesel and gasoline are selected as the fuel erosion media. Sasobit/SBS-modified asphalt binder and its mixtures are investigated for fuel erosion. The rheological properties of bitumen and the mechanical properties of asphalt mixtures are assessed. The experimental findings show that the dissolution velocity of SBS-modified asphalt with 3% Sasobit is 0.2%/min for diesel erosion, while it is 1.7%/min for gasoline erosion, lower than the control sample without Sasobit. Meanwhile, the rutting factor of Sasobit/SBS-modified asphalt decreases less than that of the control sample without Sasobit. Furthermore, the mass loss ratio after the Cantabro test of Sasobit/SBS-modified asphalt mixtures is 1.2% for diesel erosion, while it is 6.8% for gasoline erosion, lower than that of the control sample without Sasobit. The results of the mechanical properties for asphalt mixtures demonstrate that Sasobit can enhance the anti-fuel erosion performance. Moreover, the research results of the Sasobit modification mechanism show that Sasobit can form a microcrystalline structure in SBS-modified asphalt, which subsequently improves the anti-fuel of asphalt and its mixtures. This research provides a reference for anti-fuel erosion assessment methods and solutions to improve the anti-fuel erosion of asphalt pavement.

Publisher

MDPI AG

Reference35 articles.

1. Long term effect of diesel leakage on asphalt pavements;Cao;Highway,2016

2. Effect of Diesel fuel leakage on the performance of asphalt pavement;Tan;Sci. Technol. Eng.,2018

3. Study on the mechanism of asphalt oil corrosion;Li;Highw. Eng.,2016

4. Analysis of oil corrosion resistance of asphalt and asphalt mixtures;Zhang;Highway,2006

5. Research on oil erosion evaluation method of asphalt mixture based on oil erosion degree;Li;J. Wuhan Univ. Technol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3