Oxidation Driven Damage on SiC/BN/SiC Ceramic Matrix Composite Aero-Engine Structures: An Iterative Computational Framework

Author:

Canale Giacomo1,Citarella Roberto2ORCID

Affiliation:

1. College of Science and Engineering, Nuclear Engineering, University of Derby, Markeaton Street Campus, Derby DE22 3AW, UK

2. Department of Industrial Engineering, Mechanical Engineering, University of Salerno, 84084 Fisciano, Italy

Abstract

Ceramic matrix composites (CMCs) could be a game changer in the aero-engine industry. Their density is circa one-third of their metallic counterpart. CMCs, furthermore, offer increased strength and greater capability at very high temperatures. This would allow for a reduction in cooling and an increased engine performance. Some challenges, besides the complexity of the manufacturing process, however, remain for the structural integrity of this technology. CMCs are inherently brittle; furthermore, they tend to oxidise when attacked by water or oxygen, and their constituents become brittle and more prone to failure. There are two main points of novelty proposed by this work. The first one is to model and reproduce recent oxidation experimental data with a simple Fick’s law implemented in Abaqus. The parameters of this modelling are a powerful tool for the design of such material systems. The second aspect consists in the development of a new computational framework for iteratively calculating oxygen diffusion and stiffness degradation of the material. Oxidation and stiffness degradation are in fact coupled phenomena. The crack (or microcracking) opening, the function of applied stress, accelerates oxygen diffusion whilst the oxidation diffusion itself contributes to embrittlement and then damage introduction in the material system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3