Chitosan@Carboxymethylcellulose/CuO-Co2O3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants

Author:

Maslamani Nujud,Bakhsh Esraa M.,Khan Sher BahadarORCID,Danish Ekram Y.ORCID,Akhtar Kalsoom,Fagieh Taghreed M.ORCID,Su Xintai,Asiri Abdullah M.ORCID

Abstract

In this work, an efficient nanocatalyst was developed based on nanoadsorbent beads. Herein, carboxymethyl cellulose–copper oxide-cobalt oxide nanocomposite beads (CMC/CuO-Co2O3) crosslinked by using AlCl3 were successfully prepared. The beads were then coated with chitosan (Cs), Cs@CMC/CuO-Co2O3. The prepared beads, CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, were utilized as adsorbents for heavy metal ions (Ni, Fe, Ag and Zn). By using CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, the distribution coefficients (Kd) for Ni, Fe, Ag and Zn were (41.166 and 6173.6 mLg−1), (136.3 and 1500 mLg−1), (20,739.1 and 1941.1 mLg−1) and (86.9 and 2333.3 mLg−1), respectively. Thus, Ni was highly adsorbed by Cs@CMC/CuO-Co2O3 beads. The metal ion adsorbed on the beads were converted into nanoparticles by treating with reducing agent (NaBH4) and named Ni/Cs@CMC/CuO-Co2O3. Further, the prepared nanoparticles-decorated beads (Ni/Cs@CMC/CuO-Co2O3) were utilized as nanocatalysts for the reduction of organic and inorganic pollutants (4-nitophenol, MO, EY dyes and potassium ferricyanide K3[Fe(CN)6]) in the presence of NaBH4. Among all catalysts, Ni/Cs@CMC/CuO-Co2O3 had the highest catalytic activity toward MO, EY and K3[Fe(CN)6], removing up to 98% in 2.0 min, 90 % in 6.0 min and 91% in 6.0 min, respectively. The reduction rate constants of MO, EY, 4-NP and K3[Fe(CN)6] were 1.06 × 10−1, 4.58 × 10−3, 4.26 × 10−3 and 5.1 × 10−3 s−1, respectively. Additionally, the catalytic activity of the Ni/Cs@CMC/CuO-Co2O3 beads was effectively optimized. The stability and recyclability of the beads were tested up to five times for the catalytic reduction of MO, EY and K3[Fe(CN)6]. It was confirmed that the designed nanocomposite beads are ecofriendly and efficient with high strength and stability as catalysts for the reduction of organic and inorganic pollutants.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3