Highly Flexibility, Powder Self-Healing, and Recyclable Natural Polymer Hydrogels

Author:

Miao Haiyue,Hao Weiju,Liu Hongtao,Liu Yiyang,Fu Xiaobin,Huang Hailong,Ge Min,Qian Yuan

Abstract

Based on the good self-healing ability to repair mechanical damage, self-healing hydrogels have aroused great interest and been extensively applied as functional materials. However, when partial failure of hydrogels caused by breaking or dryness occurs, leading to recycling problems, self-healing hydrogels cannot solve the mentioned defects and have to be abandoned. In this work, a novel recyclable and self-healing natural polymer hydrogel (Chitosan/polymethylacrylic acid-: CMA) was prepared. The CMA hydrogel not only exhibited controlled mechanical properties from 26 kPa to 125 kPa with tensile strain from 1357% to 3012%, but also had good water retaining property, stability and fast self-healing properties in 1 min. More importantly, the CMA hydrogel displayed attractive powder self-healing performance. After drying–powdering treatment, the mentioned abandoned hydrogels could easily rebuild their frame structure to recover their original state and performance in 1 min only by adding a small amount of water, which could significantly prolong their service life. These advantages guarantee the hydrogel can effectively defend against reversible mechanical damage, water loss and partial hydrogel failure, suggesting great potential applications as a recyclable functional hydrogel for biomaterials and electronic materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference36 articles.

1. Hydrogel membranes: A review

2. Hydrogel biomaterials: A smart future?

3. Preparation of sodium alginate-based super absorbent polymer by radiation grafting and crosslinking;Ye;Nucl. Tech.,2020

4. Hydrogel machines

5. Hydrogel soft robotics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3