Abstract
The development of biodegradable polysaccharide hydrogel matrices for cytostatic delivery can improve the therapeutic results of patients by prolonging the action of the drug, reducing its toxicity and providing additional biological activity by polysaccharides. In this work, N-succinyl chitosan/hyaluronic acid dialdehyde/cytostatic formulations have been prepared using two different chitosan grades (30 kDa and 150 kDa) and hyaluronic acid dialdehyde. The interaction of amino groups of N-succinyl chitosan and aldehydes of hyaluronic acid resulted in the formation of azomethine bonds and was demonstrated using 13C NMR. The elastic properties of the obtained hydrogels determine their use as implants. Two cytostatics—5-fluorouracil and mitomycin C were chosen as drugs because of their using both in oncology and in ophthalmology for the surgical treatment of glaucoma. Hydrogel formulations containing cytostatic were prepared and drug release was studied using in vitro dialysis method. It was established that the molecular weight of N-succinyl chitosan and rheological properties of hydrogel influenced the drug release behavior of the gelling delivery system. Formulations prepared from N-succinyl chitosan with greatest molecular weight and mitomycin C were found to be the most promising for medical application due to their rheological properties and prolonged drug release. Mild preparation conditions, simplicity of the technique, short gelation time (within a minute), 100% yield of hydrogel, suitability for drug release applications are the main advantages of the obtained hydrogels.
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献