Abstract
The inherent complexity of human physical activities makes it difficult to accurately recognize activities with wearable sensors. To this end, this paper proposes a hierarchical activity recognition framework and two different feature selection methods to improve the recognition performance. Specifically, according to the characteristics of human activities, predefined activities of interest are organized into a hierarchical tree structure, where each internal node represents different groups of activities and each leaf node represents a specific activity label. Then, the proposed feature selection methods are appropriately integrated to optimize the feature space of each node. Finally, we train corresponding classifiers to distinguish different activity groups and to classify a new unseen sample into one of the leaf-nodes in a top-down fashion to predict its activity label. To evaluate the performance of the proposed framework and feature selection methods, we conduct extensive comparative experiments on publicly available datasets and analyze the model complexity. Experimental results show that the proposed method reduces the dimensionality of original feature space and contributes to enhancement of the overall recognition accuracy. In addition, for feature selection, returning multiple activity-specific feature subsets generally outperforms the case of returning a common subset of features for all activities.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献