A Theoretical Model of Residual Magnetic Field around a Pre-Magnetized Casing String

Author:

Shi YucaiORCID,Jia Dongyue,Guan Zhichuan,Xu Yuqiang,Yang Weixing,Zhang Duanrui

Abstract

In the field of petroleum drilling engineering, passive magnetic ranging technology is generally used for specialized drilling operations such as connecting relief wells, preventing wellbore collisions, guiding parallel horizontal wells, etc. Although pre-magnetized casing strings have been used to improve the detection distance and accuracy, the theoretical mechanism is not well understood. Based on the equivalent current model of a permanent magnet, a theoretical magnetic field model around the pre-magnetized casing string was established by using the vector potential method and vector superposition principle and validated by the COMSOL Multiphysics software. Our results show that connecting pre-magnetized individual casings with homogeneous magnetic poles can enlarge the magnetic induction intensity around the total casing string. Furthermore, the magnitude close to the casing coupling is significantly larger than that close to the middle of the individual casing. Connecting pre-magnetized individual casings with heterogeneous magnetic poles results in a low magnetic induction intensity around the total casing string. In order to improve the detection distance and accuracy of the magnetic ranging, the pre-magnetized individual casings should be connected with homogeneous magnetic poles. The results of this study can provide guidelines for the development of passive magnetic ranging technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. A detection system based on three-electrode array for connecting a relief well to failure well;Li;Acta Pet. Sin.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3