Performance Comparison of PD Data Acquisition Techniques for Condition Monitoring of Medium Voltage Cables

Author:

Shafiq MuhammadORCID,Kiitam Ivar,Kauhaniemi KimmoORCID,Taklaja Paul,Kütt Lauri,Palu Ivo

Abstract

Already installed cables are aging and the cable network is growing rapidly. Improved condition monitoring methods are required for greater visibility of insulation defects in the cable networks. One of the critical challenges for continuous monitoring is the large amount of partial discharge (PD) data that poses constraints on the diagnostic capabilities. This paper presents the performance comparison of two data acquisition techniques based on phase resolved partial discharge (PRPD) and pulse acquisition (PA). The major contribution of this work is to provide an in-depth understanding of these techniques considering the perspective of randomness of the PD mechanism and improvements in the reliability of diagnostics. Experimental study is performed on the medium voltage (MV) cables in the laboratory environment. It has been observed that PRPD based acquisition not only requires a significantly larger amount of data but is also susceptible to losing the important information especially when multiple PD sources are being investigated. On the other hand, the PA technique presents improved performance for PD diagnosis. Furthermore, the use of the PA technique enables the efficient practical implementation of the continuous PD monitoring by reducing the amount of data that is acquired by extracting useful signals and discarding the silent data intervals.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3