Abstract
Few life cycle assessments (LCAs) on willow biomass production have investigated the effects of key geographically specific parameters. This study uses a spatial LCA model for willow biomass production to determine spatially explicit greenhouse gas (GHG) emissions and energy return on investment (EROI), including land use conversion from pasture and cropland or grassland. There were negative GHG emissions on 92% of the land identified as suitable for willow biomass production, indicating this system’s potential for climate change mitigation. For willow planted on cropland or pasture, life cycle GHG emissions ranged from −53.2 to −176.9 kg CO2eq Mg-1. When willow was grown on grassland the projected decrease in soil organic carbon resulted in a slightly positive GHG balance. Changes in soil organic carbon (SOC) associated with land use change, transportation distance, and willow yield had the greatest impacts on GHG emissions. Results from the uncertainty analysis exhibited large variations in GHG emissions between counties arising from differences in these parameters. The average EROI across the entire region was 19.2. Willow biomass can be a carbon negative or low-carbon energy source with a high EROI in regions with similar infrastructure, transportation distances, and growing conditions such as soil characteristics, land cover types, and climate.
Funder
Bioenergy Technologies Office
U.S. Department of Agriculture
New York State Energy Research and Development Authority
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献