Evaluation of Applicability of Various Color Space Techniques of UAV Images for Evaluating Cool Roof Performance

Author:

Lee KirimORCID,Seong Jihoon,Han YoukyungORCID,Lee Won Hee

Abstract

Global warming is intensifying worldwide, and urban heat islands are occurring as urbanization progresses. The cool roof method is one alternative for reducing the urban heat island phenomenon and lowering the heat on building roofs for a comfortable indoor environment. In this study, a cool roof evaluation was performed using an unmanned aerial vehicle (UAV) and a red, green and blue (RGB) camera instead of a laser thermometer and a thermal infrared sensor to evaluate existing cool roofs. When using a UAV, an RGB sensor is used instead of expensive infrared sensor. Various color space techniques, namely light-reflectance value, hue saturation value (HSV), hue saturation lightness, and YUV (luma component (Y) and two chrominance components, called U (blue projection) and V (red projection)) derived from RGB images, are applied to evaluate color space techniques suitable for cool roof evaluation. This case study shows the following quantitative results: among various color space techniques investigated herein, the white roof with lowest temperature (average surface temperature: 44.1 °C; average indoor temperature: 33.3 °C) showed highest HSV, while the black roof with the highest temperature (surface temperature average: 73.4 °C; indoor temperature average: 37.1 °C) depicted the lowest HSV. In addition, the HSV showed the highest correlation in both the Pearson correlation coefficient and the linear regression analyses when the correlation among the brightness, surface temperature, and indoor temperature of the four color space techniques was analyzed. This study is considered a valuable reference for using RGB cameras and HSV color space techniques, instead of expensive thermal infrared cameras, when evaluating cool roof performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. Korea Meteorological Administrationhttp://www.kma.go.kr/download_02/ellinonewsletter_2018_07.pdf

2. Korea Meteorological Administrationhttp://www.kma.go.kr/download_02/ellinonewsletter_2018_08.pdf

3. Ground and top of canopy layer urban heat island partitioning on an airborne image

4. Impact of a cool roof application on the energy and comfort performance in an existing non-residential building. A Sicilian case study

5. The Effect of the Heat Island on Air Conditioning Load;Santamouris;J. Energy Build.,2000

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3