The IQA Energy Partition in a Drug Design Setting: A Hepatitis C Virus RNA-Dependent RNA Polymerase (NS5B) Case Study

Author:

Zapata-Acevedo César A.ORCID,Popelier Paul L. A.ORCID

Abstract

The interaction of the thumb site II of the NS5B protein of hepatitis C virus and a pair of drug candidates was studied using a topological energy decomposition method called interacting quantum atoms (IQA). The atomic energies were then processed by the relative energy gradient (REG) method, which extracts chemical insight by computation based on minimal assumptions. REG reveals the most important IQA energy contributions, by atom and energy type (electrostatics, sterics, and exchange–correlation), that are responsible for the behaviour of the whole system, systematically from a short-range ligand–pocket interaction until a distance of approximately 22 Å. The degree of covalency in various key interatomic interactions can be quantified. No exchange–correlation contribution is responsible for the changes in the energy profile of both pocket–ligand systems investigated in the ligand–pocket distances equal to or greater than that of the global minimum. Regarding the hydrogen bonds in the system, a “neighbour effect” was observed thanks to the REG method, which states that a carbon atom would rather not have its covalent neighbour oxygen form a hydrogen bond. The combination of IQA and REG enables the automatic identification of the pharmacophore in the ligands. The coarser Interacting Quantum Fragments (IQF) enables the determination of which amino acids of the pocket contribute most to the binding and the type of energy of said binding. This work is an example of the contribution topological energy decomposition methods can make to fragment-based drug design.

Funder

Consejo Nacional de Ciencia y Tecnología

EPSRC

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3