Indole-3-Carbinol Stabilizes p53 to Induce miR-34a, Which Targets LDHA to Block Aerobic Glycolysis in Liver Cancer Cells

Author:

Qi Yuehua,Zhang Chunjing,Wu Di,Zhang Yue,Zhao YunfengORCID,Li WenjuanORCID

Abstract

Certain cancer cells prefer aerobic glycolysis rather than oxidative phosphorylation for energy supply. Lactate dehydrogenase A (LDHA) catalyzes the reduction of pyruvate to lactate and regains NAD+ so that glycolysis is continued. As a pivotal enzyme to promote smooth glycolysis, LDHA plays an important role in carcinogenesis. Indole-3-carbinol (I3C) has displayed antitumor activity, but the exact mechanism remains to be identified. In this study, we treated liver cancer cells with I3C, performed colony formation and cell migration, measured the expression of glycolysis-related proteins, and predicted and validated LDHA-targeting miRNA from the databases. In addition, the mRNA and protein levels of p53, glycolysis-related genes and miRNAs that regulate glycolysis were detected after I3C and siRNA-p53 treatment alone or in combination. Next, the expression and colocalization of p53 and MDM2 in liver cancer cells were evaluated after I3C treatment, and the effect of I3C on p53 protein stability was examined. The results showed that I3C inhibited cell proliferation, migration, and the expression levels of glycolysis-related gene LDHAs. MiR-34a was predicted to target LDHA, and I3C downregulated its expression. Furthermore, the combined I3C and siRNA-p53 treatment demonstrated that I3C regulated the expression of LDHA via miR-34a in a p53-dependent manner. Finally, I3C inhibited MDM2 expression and its colocalization with p53 and stabilized p53 expression. In summary, I3C inhibited the degradation of p53 by MDM2 in liver cancer cells; stable p53 induced miR-34a, which targeted LDHA, a key enzyme for aerobic glycolysis, suggesting cancer metabolism is an important target for I3C in liver cancer cells.

Funder

College Students' innovation and entrepreneurship training program of Hebei University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3