Design and Analysis of Joint Source-Channel Code System with Fixed-Length Code

Author:

Bao Han,Zhang Can,Gao Shaoshuai

Abstract

As the demands of multimedia and data services increase, efficient communication systems are being investigated to meet the high data rate requirements. Joint source-channel coding (JSCC) schemes were proposed for improving overall system performance. However, existing JSCC systems may suffer a symbol error rate (SER) performance loss when residual source redundancy is not fully exploited. This paper presents a novel, low-complexity JSCC system, which consists of a fixed-length source block code and an irregular convolutional channel code. A simple approach is proposed to design source codes that minimize the SER of source detection and guarantee the convergence of iterative source-channel decoding (ISCD). To improve the waterfall performance of ISCD, the channel code is optimized by using the extrinsic information transfer (EXIT) chart and the concept of irregular code. The channel code is constituted by recursive non-systematic convolutional (RNSC) subcodes. The weights of subcodes are optimized to make the EXIT curves of the channel decoder and the source decoder well-matched, and therefore, a near-capacity performance is achieved. Simulation results show that the proposed system achieves more than 1 dB gains and 0.3 dB gains compared to the separate source-channel code system and the other optimal JSCC systems, respectively. Additionally, the performance of the proposed system is within 1 dB deviation from the Shannon limit capacity.

Publisher

MDPI AG

Subject

Information Systems

Reference35 articles.

1. The Mathematical Theory of Communication;Shannon,1949

2. Turbo decodulation: iterative combined demodulation and source-channel decoding

3. Design and performance analysis of joint source-channel turbo schemes with variable length codes;Jaspar;IEEE Int. Conf. Commun.,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3