Quadratic Voting in Blockchain Governance

Author:

Dimitri Nicola

Abstract

Governance in blockchain platforms is an increasingly important topic. A particular concern related to voting procedures is the formation of dominant positions, which may discourage participation of minorities. A main feature of standard majority voting is that individuals can indicate their preferences but cannot express the intensity of their preferences. This could sometimes be a drawback for minorities who may not have the opportunity to obtain their most desirable outcomes, even when such outcomes are particularly important for them. For this reason a voting method, which in recent years gained visibility, is quadratic voting (QV), which allows voters to manifest both their preferences and the associated intensity. In voting rounds, where in each round users express their preference over binary alternatives, what characterizes QV is that the sum of the squares of the votes allocated by individuals to each round has to be equal to the total number, budget, of available votes. That is, the cost associated with a number of votes is given by the square of that number, hence it increases quadratically. In the paper, we discuss QV in proof-of-stake-based blockchain platforms, where a user’s monetary stake also represents the budget of votes available in a voting session. Considering the stake as given, the work focuses mostly on a game theoretic approach to determine the optimal allocation of votes across the rounds. We also investigate the possibility of the so-called Sybil attacks and discuss how simultaneous versus sequential staking can affect the voting outcomes with QV.

Publisher

MDPI AG

Subject

Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proposal and Implementation of a Fact-Checking DAO;Proceedings of Blockchain Kaigi 2023 (BCK23);2024-07-16

2. Pika: Empowering Non-Programmers to Author Executable Governance Policies in Online Communities;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

3. Voting with Time Commitment for Decentralized Governance: Bond Voting as a Sybil-Resistant Mechanism;Management Science;2024-03-06

4. Democracy by Design: Perspectives for Digitally Assisted, Participatory Upgrades of Society;Journal of Computational Science;2023-07

5. A Pattern-Oriented Reference Architecture for Governance-Driven Blockchain Systems;2023 IEEE 20th International Conference on Software Architecture (ICSA);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3