Modelling High Resolution Agricultural Nitrogen Budgets: A Case Study for Germany

Author:

Zinnbauer Maximilian1ORCID,Brandes Elke1,Eysholdt Max1ORCID,Henseler Martin23ORCID,Löw Philipp1

Affiliation:

1. Thünen-Institute of Rural Studies, Bundesallee 50, 38102 Braunschweig, Germany

2. Laboratory of Economics Rouen Normandie (LERN), Université Rouen Normandie, LERN UR 4702, 76186 Rouen Cedex 1, France

3. Partnership for Economic Policy (PEP), Nairobi P.O. Box 30772-00100, Kenya

Abstract

Water pollution with nitrogen (N) from agriculture constitutes a persisting environmental problem in intensive farming regions worldwide. Understanding the spatio-temporal interconnection between agricultural N emissions and N inputs to water bodies is key to evaluating and improving existing mitigation policies. Nitrogen flux models are an indispensable tool for addressing these complex research questions in the land use–water nexus, requiring adequate data on agricultural N surpluses. However, high-resolution farm management data are not readily available to the scientific community. We develop a municipality-level agricultural N budget model for Germany based on farm-level administration data from the Integrated Administration and Control System (IACS) and regional expert knowledge. We estimate a total agricultural N surplus of 58 kg N ha−1 of utilised agricultural area as the three-year average for 2014–2016. About 90% of municipalities exhibit N surpluses between 21 and 99 kg N ha−1. Evaluation with collected farm accountancy data revealed a good fit of the modelled (with observed) mineral N quantities applied. Our results highlight the potential of farm-level data for N flux models. Due to the ubiquitous reporting of land use and farming structures in the IACS, our approach can be adapted in other countries of the EU to serve as a harmonised backbone of monitoring and policy impact assessments.

Funder

Bund/Länder-Arbeitsgemeinschaft Wasser

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3