A Retrofit Hierarchical Architecture for Real-Time Optimization and Control Integration

Author:

Li XiaochenORCID,Xie Lei,Li Xiang,Su Hongye

Abstract

To achieve the optimal operation of chemical processes in the presence of disturbances and uncertainty, a retrofit hierarchical architecture (HA) integrating real-time optimization (RTO) and control was proposed. The proposed architecture features two main components. The first is a fast extremum-seeking control (ESC) approach using transient measurements that is employed in the upper RTO layer. The fast ESC approach can effectively suppress the impact of plant-model mismatch and steady-state wait time. The second is a global self-optimizing control (SOC) scheme that is introduced to integrate the RTO and control layers. The proposed SOC scheme minimizes the global average loss based on the approximation of necessary conditions of optimality (NCO) over the entire operating region. A least-squares regression technique was adopted to select the controlled variables (CVs) as linear combinations of measurements. The proposed method does not require the second order derivative information, therefore, it is numerically more reliable and robust. An exothermic reaction process is presented to illustrate the effectiveness of the proposed method.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3