A Probability-Based Models Ranking Approach: An Alternative Method of Machine-Learning Model Performance Assessment

Author:

Gajda Stanisław,Chlebus MarcinORCID

Abstract

Performance measures are crucial in selecting the best machine learning model for a given problem. Estimating classical model performance measures by subsampling methods like bagging or cross-validation has several weaknesses. The most important ones are the inability to test the significance of the difference, and the lack of interpretability. Recently proposed Elo-based Predictive Power (EPP)—a meta-measure of machine learning model performance, is an attempt to address these weaknesses. However, the EPP is based on wrong assumptions, so its estimates may not be correct. This paper introduces the Probability-based Ranking Model Approach (PMRA), which is a modified EPP approach with a correction that makes its estimates more reliable. PMRA is based on the calculation of the probability that one model achieves a better result than another one, using the Mixed Effects Logistic Regression model. The empirical analysis was carried out on a real mortgage credits dataset. The analysis included a comparison of how the PMRA and state-of-the-art k-fold cross-validation ranked the 49 machine learning models, an example application of a novel method in hyperparameters tuning problem, and a comparison of PMRA and EPP indications. PMRA gives the opportunity to compare a newly developed algorithm to state-of-the-art algorithms based on statistical criteria. It is the solution to select the best hyperparameters configuration and to formulate criteria for the continuation of the hyperparameters space search.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3