Effects of Isochlorogenic Acid on Ewes Rumen Fermentation, Microbial Diversity and Ewes Immunity of Different Physiological Stages

Author:

Li Shuyan12,Li Xiongxiong3,Sha Yuzhu3,Qi Shuai12,Zhang Xia12,Wang Huning12,Wang Zhengwen12ORCID,Zhao Shengguo3ORCID,Jiao Ting12

Affiliation:

1. College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China

2. Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China

3. College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The effects of isochlorogenic acid (ICGA) on ewes rumen environment, microbial diversity, and immunity at different physiological stages (estrus, pregnancy and lactation) were studied in this experiment. Twenty healthy female Hu lambs of 1.5 months with similar body weight (17.82 ± 0.98 kg) and body condition were selected and randomly divided into two groups: the control group (CON) and the ICGA group (ICGA). The lambs of CON were fed a basal diet, while the lambs of ICGA were supplemented with 0.1% ICGA based on the basal diet. Lambs rumen fermentation characteristics, microbial diversity and immunity at estrus, pregnancy, and lactation stages were determined and analyzed, respectively. The results showed that the rumen pH in CON increased first and then decreased as lambs grew (p < 0.05). However, it showed the opposite change in ICGA. The content of ammonia nitrogen (NH3-N) showed the highest at estrus stage in both groups, but it was significantly higher in ICGA than that in CON (p < 0.05). The Acetic acid/propionic acid (A/P) ratio at estrus stage and the volatile fatty acids (VFAs) at pregnancy stage in ICGA were significantly higher than those of the CON (p < 0.05). The 16S rDNA sequencing analysis showed that the Shannon, Chao 1 and ACE indexes of the ICGA were significantly higher than those of the CON both at estrus and lactation stages (p < 0.05), while they showed higher at the pregnancy stage in CON (p > 0.05). Principal component analysis (PCA) showed that there were significant differences in rumen microorganism structure between CON and ICGA at all physiological stages (p < 0.01). At the phylum level, compared with the CON, Firmicutes relative abundance of three physiological stages decreased (p > 0.05) while Bacteroidota increased (p > 0.05). The relative abundance of Synergistota at estrus stage and Patescibacteria at the lactation stage increased significantly too (p < 0.05). At the genus level, compared with the CON, the relative abundance of Prevotella at three stages showed the highest (p > 0.05), while the relative abundance of Succiniclasticum, unclassified_Selenomonadaceae and Rikenellaceae_RC9_gut_group showed different abundances at different physiological stages in ICGA. Compared with the CON, the lambs of the ICGA showed higher blood IgG, IgM, and TNF- α contents at three physiological stages and higher IL-6 contents at pregnancy stage (p < 0.05). Conclusion: Adding ICGA could regulate ewes rumen fermentation mode at different physiological stages by increasing rumen NH3-N at estrus, VFAs at pregnancy, and the ratio of A/P at lactation. It optimizes rumen microbial flora of different physiological stages by increasing Bacteroidota relative abundance while reducing Firmicutes relative abundance, maintaining rumen microbial homeostasis at pregnant stage, increasing the number of beneficial bacteria in later lactating and ewes blood immunoglobulins content at three physiological stages.

Funder

Gansu Provincial Science and Technology Plan Project Technology Innovation Guidance Plan-Lugan Science and Technology Cooperation Special Topic

South Xinjiang Key Industry Innovation Development Support Program Project

Major Special Project of Gansu Provincial Department of Science and Technology

Guanghe County Cow and Sheep Industry Quality Improvement and Efficiency Enhancement Technology Demonstration Project

Publisher

MDPI AG

Reference55 articles.

1. Structural transition of protein intake in urban China: Stage characteristics and driving forces;Li;Agribusiness,2023

2. Ma, Z.F. (2020). Research on the Construction and Application of Dairy Big Data Platform from the Perspective of Grassland Agriculture, Lanzhou University.

3. Perspectives on livestock production systems in China;Li;Rangel. J.,2008

4. Khanal, P., and Nielsen, M.O. (2017). Impacts of prenatal nutrition on animal production and performance: A focus on growth and metabolic and endocrine function in sheep. J. Anim. Sci. Biotechnol., 8.

5. Effects of compound Chinese herbal medicine additive on reproductive performance, some blood biochemical indexes and reproductive hormones of Hu sheep ewes;Zhang;Heilongjiang J. Anim. Sci. Vet. Med. Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3