Impact of Climate Change on the Distribution of Three Rare Salamanders (Liua shihi, Pseudohynobius jinfo, and Tylototriton wenxianensis) in Chongqing, China, and Their Conservation Implications

Author:

Ma Qi12ORCID,Wan Lipeng1ORCID,Shi Shengchao34ORCID,Wang Zhijian1ORCID

Affiliation:

1. State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400700, China

2. Chongqing Natural History Museum, Chongqing 400700, China

3. Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan 430056, China

4. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

Abstract

The Wushan Salamander (Liua shihi), Jinfo Salamander (Pseudohynobius jinfo), and Wenxian Knobby Salamander (Tylototriton wenxianensis) are rare national Class II protected wild animals in China. We performed MaxEnt modeling to predict and analyze the potential distribution and trends of these species in Chongqing under current and future climate conditions. Species distribution data were primarily obtained from field surveys, supplemented by museum collections and the existing literature. These efforts yielded 636 records, including 43 for P. jinfo, 23 for T. wenxianensis, and 570 for L. shihi. Duplicate records within the same 100 m × 100 m grid cell were removed using ENMTools, resulting in 10, 12, and 58 valid distribution points for P. jinfo, T. wenxianensis, and L. shihi, respectively. The optimization of feature class parameters (FC) and the regularization multiplier (RM) were applied using R package “ENMeval 2.0” to establish the optimal model with MaxEnt. The refined models were applied to simulate the suitable distribution areas for the three species. The results indicate that the current suitable habitat area for L. shihi accounted for 9.72% of the whole region of the Chongqing municipality. It is projected that, by 2050, the proportion of suitable habitat will increase to 12.54% but will decrease to 11.98% by 2070 and further decline to 8.80% by 2090. The current suitable habitat area for P. jinfo accounted for 1.08% of the whole region of the Chongqing municipality, which is expected to decrease to 0.31%% by 2050, 0.20% by 2070, and 0.07% by 2090. The current suitable habitat area for T. wenxianensis accounted for 0.81% of the whole region of the Chongqing municipality, which is anticipated to decrease to 0.37% by 2050, 0.21% by 2070, and 0.06% by 2090. Human disturbance, climate variables, and habitat characteristics are the primary factors influencing the distribution of three salamander species in Chongqing. The proximity to roads significantly impacts L. shihi, while climate conditions mainly affect P. jinfo, and the distance to water sources is crucial for T. wenxianensis. The following suggestions were made based on key variables identified for each species: (1) For L. shihi, it is imperative to minimize human disturbances and preserve areas without roads and the existing vegetation within nature reserves to ensure their continued existence. (2) For P. jinfo, the conservation of high-altitude habitats is of utmost importance, along with the reduction in disturbances caused by roads to maintain the species’ ecological niche. (3) For T. wenxianensis, the protection of aquatic habitats is crucial. Additionally, efforts to mitigate the impacts of road construction and enhance public awareness are essential for the preservation of this species and the connectivity of its habitats.

Funder

Forestry Bureau of Chongqing Municipality

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3