Land Use Pattern Affects Microplastic Concentrations in Stormwater Drains in Urban Catchments in Perth, Western Australia

Author:

Bond Cassandra,Li HuaORCID,Rate Andrew W.ORCID

Abstract

Stormwater drains act as important vectors for microplastics, enabling the transportation of microplastic polymers from terrestrial systems where they are produced and consumed to aquatic and marine ecosystems. In this study, microplastic concentrations and their size fractions were measured in six stormwater catchments in the Perth and Peel region of Western Australia. Stormwater drains with contrasting land uses and catchment characteristics were selected and two sites along each drain were sampled. Water samples were filtered in situ with a purpose-built fractionation device. Catchment boundaries and contributing drainage areas were derived from a hydrologically enforced digital elevation model. Microplastic concentrations within the sites varied from 8.8 to 25.1 microplastics/L (mean 14.2 microplastics/L). Fibrous microplastics were the most common morphology, followed by fragments. Polymer types identified using Raman spectroscopy included polypropylene (64.6% of samples), polyethylene (64.7%), polytetrafluoroethylene (5.9%) and polyvinylidene fluoride (5.9%). There was no statistically significant variation in microplastic concentrations across or within stormwater catchments. A linear mixed-effect model showed that several components of the land use pattern: catchment area, catchment population, and the proportion of industrial land, natural land and public open space, were positively related to microplastic concentrations. The proportion of residential land was negatively related to microplastic concentrations. The lack of significant variation in microplastic concentration observed both across and within the catchments points to their ubiquitous presence in stormwater systems in the region. This study is the first to examine microplastic contamination in the water of stormwater drainage systems in Perth, Western Australia. These stormwater systems contain considerable concentrations of microplastics, confirming their importance as transport mechanisms for plastics into aquatic and marine ecosystems.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3