Abstract
The aims of this work are to present an analysis of quality solar radiation data and develop several hourly models of photosynthetically active radiation (PAR) using combinations of radiometric variables such as global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and direct normal irradiance (DNI) from their dimensionless indices atmospheric clearness index (kt), horizontal diffuse fraction (kd), and normal direct fraction (kb) together with solar elevation angle (α). GHI, DHI, and DNI data with 1-minute frequencies in the period from 2016 to 2021 from CEDER-CIEMAT, in a northern plateau, and PSA-CIEMAT in the southeast of the Iberian Peninsula, were used to compare two locations with very different climates according to the Köppen—Geiger classification. A total of 15 multilinear models were fitted and validated (with independent training and validation data) using first the whole dataset and then by kt intervals. In most cases, models including the clearness index showed better performance, and among them, models that also use the solar elevation angle as a variable obtained remarkable results. Additionally, according to the statistical validation, these models presented good results when they were compared with models in the bibliography. Finally, the model validation statistics indicate a better performance of the interval models than the complete models.
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change