Quantifying the Impact of the Billion Tree Afforestation Project (BTAP) on the Water Yield and Sediment Load in the Tarbela Reservoir of Pakistan Using the SWAT Model

Author:

Shafeeque Muhammad,Sarwar AbidORCID,Basit Abdul,Mohamed Abdelmoneim Zakaria,Rasheed Muhammad WaseemORCID,Khan Muhammad Usman,Buttar Noman Ali,Saddique Naeem,Asim Mohammad Irfan,Sabir Rehan Mehmood

Abstract

The live storage of Pakistan’s major reservoirs, such as the Tarbela reservoir, has decreased in recent decades due to the sedimentation load from the Upper Indus Basin, located in High Mountain Asia. The government of Khyber Pakhtunkhwa took the initiative in 2014 and introduced the Billion Tree Afforestation Project (BTAP). They planted one billion trees by August 2017, mostly in hilly areas. In 2018, the Government of Pakistan also launched a project of 10 billion trees in five years. We assessed the effect of different land-use and land-cover (LULC) scenarios on the water yield and sediment load in the Tarbela reservoir of Pakistan. The soil and water assessment tool (SWAT) model was used to predict the impacts of the LULC changes on the water yield and sediment load under three distinct scenarios: before plantation (2013), after planting one billion trees (2017), and after planting ten billion trees (2025). The model calibration and validation were performed from 1984 to 2000 and 2001 to 2010, respectively, using the SUFI2 algorithm in SWAT-CUP at the Bisham Qila gauging station. The statistical evaluation parameters showed a strong relationship between observed and simulated streamflows: calibration (R2 = 0.85, PBIAS = 11.2%, NSE = 0.84) and validation (R2 = 0.88, PBIAS = 10.5%, NSE = 0.86). The validation results for the sediment load were satisfactory, indicating reliable model performance and validity accuracy (R2 = 0.88, PBIAS = −19.92%, NSE = 0.86). Under the LULC change scenarios, the water yield’s absolute mean annual values decreased from 54 mm to 45 mm for the first and second scenarios, while the third scenario had an estimated 35 mm mean annual water yield in the Tarbela reservoir. The sediment load results for the second scenario (2017) showed a 12% reduction in the sediment flow in the Tarbela reservoir after 1 billion trees were planted. In the third scenario (2025), following the planting of 10 billion trees, among which 3 billion were in the Tarbela basin, the sediment load was predicted to decrease by 22%. The overall results will help to inform the water managers and policymakers ahead of time for the best management and planning for the sustainable use of the water reservoirs and watershed management.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference49 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3