Lithium-Ion Battery Capacity Estimation Based on Incremental Capacity Analysis and Deep Convolutional Neural Network

Author:

Zeng Sibo1,Chen Sheng2ORCID,Alkali Babakalli2

Affiliation:

1. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou 412001, China

2. School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK

Abstract

Accurate estimation of Li-ion battery capacity is critical for a battery management system (BMS). This paper proposes an innovative method which combines a convolutional neural network and incremental capacity analysis (ICA). In the present approach, the voltage and temperature, which significantly affect the ICA curve during the discharging process, are adopted as the inputs for CNN. Rather than extracting feature parameters of an IC curve, as is carried out in the available research, the present method uses the whole ICA curve as the input to avoid complicated feature extraction and correlation analysis. The results show that the maximum error of capacity estimation is less than 4.7%, the rectified mean squared error is less than 1.3% for each battery, and the overall RMSE is below 1.12%.

Publisher

MDPI AG

Reference34 articles.

1. Survey on lithium-ion battery health assessment and cycle life estimation;Liu;Chin. J. Sci. Instrum.,2015

2. A review of lithium ion battery failure mechanisms and fire prevention strategies;Wang;Prog. Energy Combust. Sci.,2019

3. Hybrid battery/supercapacitor energy storage system for the electric vehicles;Kouchachvili;J. Power Sources,2018

4. A review of supercapacitor modeling, estimation, and applications: A control/management perspective;Zhang;Renew. Sustain. Energy Rev.,2018

5. Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering;Dong;IEEE Trans. Ind. Electron.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3