A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types

Author:

Wu Jinrong1,Nguyen Su1,Alahakoon Damminda1,De Silva Daswin1ORCID,Mills Nishan1ORCID,Rathnayaka Prabod1ORCID,Moraliyage Harsha1ORCID,Jennings Andrew2ORCID

Affiliation:

1. Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia

2. Infrastructure and Operations Group, La Trobe University, Bundoora, VIC 3086, Australia

Abstract

Building energy baseline models, particularly machine learning-based models, are a core aspect in the evaluation of building energy performance to identify inefficient energy consumption behavior. In smart city design, energy planners and decision makers require comprehensive information on energy consumption across diverse building types as well as comparisons between different types of buildings. However, there is no comprehensive study of baseline modeling across the main building types to help identify factors that influence the performance of different machine learning algorithms for baseline modeling. Therefore, the goal of this paper is to review and analyze energy consumption behavior and evaluate the prediction performance and interpretability of machine learning-based baseline modeling techniques across major building types. The results have shown that the Extreme Gradient Boosting Machine (XGBoost) model is the most accurate baseline modeling method for all building types. Time-related factors, especially the week of the year and the day of the week, have the most impact on energy consumption across all building types. This study is presented as a useful resource for smart city energy managers to help in choosing and setting up appropriate methodologies for better operational effectiveness and efficiencies when designing and planning smart energy systems.

Publisher

MDPI AG

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3