A Integrated Dedicated Outdoor Air System to Optimize Energy Saving

Author:

Chuah Yew Khoy,Yang Jun Jie

Abstract

Outdoor air supply is required to maintain good indoor air quality (IAQ). For tropical or subtropical regions, warm and humid outdoor air would cause excess air-conditioning energy use. This study has proposed an integrated dedicated outdoor air system (IDOAS), which integrates the enthalpy exchange and outdoor air cooling into a unitary system. IDOAS could operate independently of central air-conditioning systems thus saving tremendous piping cost and energy needed to deliver chilled water to outdoor air unit in a conventional centralized system. An experimental unit of IDOAS was built to prove this novel concept. Enthalpy exchange efficiency was tested to be about 44%. The test results show that about 44% of energy needed to condition the outdoor air can be saved. A reverse Rankine refrigeration cycle was integrated to cool the outdoor air. Due to this integrated configuration, the air passing through the condenser would be at a lower temperature. The consequent lower refrigerant condensing temperature would improve the cooling cycle efficiency. The cooling coefficient of performance (COP) was improved by about 46%. In addition, the outdoor air could be conditioned to a lower humidity before being supplied to space, which would improve the thermal comfort. The test results of this novel IDOAS show that it could provide good air quality at lower energy use.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference24 articles.

1. Taiwan Indoor Air Quality Act, Administered by Environmental Protection Administration https://www.roc-taiwan.org/us_en/post/4612.html

2. Indoor Air Pollution: A Public Health Perspective

3. The Indoor Air Quality Management Act in the Public Using Facility http://seaisi.org/thumbnail/32d419d10e65d65060e4b898af5f8942.pdf

4. Control systems to comply with ASHRAE standard 62–1989;Levenhagen;ASHRAE J.,1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3