Recent Progress on Vegetation Remote Sensing Using Spaceborne GNSS-Reflectometry

Author:

Wu XueruiORCID,Guo Peng,Sun Yueqiang,Liang Hong,Zhang Xinggang,Bai Weihua

Abstract

Vegetation is an important part of the terrestrial ecosystem and plays a vital role in the global carbon cycle. Traditional remote sensing methods have certain limitations in vegetation monitoring, and the development of GNSS-R (Global Navigation Satellite System-Reflectometry) technology provides a new and complimentary method. With the CYGNSS (Cyclone Global Navigation Satellite System) launch and the increased data acquisition, the use of spaceborne GNSS-R for vegetation monitoring has become a research hotspot. However, due to the complex characteristics of vegetation, its application in this field is still in the exploratory research stage. On the basis of reviewing the current research status, this paper points out the weak links of this technology in terms of polarization and observation geometry. Combined with the microwave vegetation scattering model, this paper analyzes the full polarization bistatic scattering characteristics of vegetation and points out the influence of vegetation parameters (density, water content, and vegetation diameters). The potential feasibility of polarization GNSS-R and future development trends of GNSS-R technology in quantitative retrieval (such as vegetation water content and biomass) are also discussed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry;Martin-Neira;ESA J.,1993

2. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity

3. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3