Multi-Resolution STAP for Enhanced Ultra-Low-Altitude Target Detection

Author:

Li Haodong,Liao Guisheng,Xu JingweiORCID,Zeng Cao,He Xiongpeng,Gao Pengfei

Abstract

In this paper, an ultra-low-altitude target (ULAT) detection approach, referred to as the multi-resolution space-time adaptive processing (STAP), is proposed to enhance the target detection performance in a missile-borne radar system. In this respect, the whole base band is divided into a series of equal-width and center-frequency-diverse sub-bands with the frequency diversity technique, which enhances the multipath-target coupled (MTC) effect with the decreased range resolution. Hence, it is feasible to exploit the multipath signal power to improve the output signal-to-clutter-plus-noise ratio (SCNR) performance of sub-band STAP. In this regard, the mechanism of the MTC effect is analyzed numerically for the efficient sub-band STAP. However, such SCNR improvement is achieved at the cost of target tracking performance loss. Hence, the full-band STAP is further applied for multipath-target separation based on the target range-Doppler locations detected by the joint multiple sub-bands ΣΔ-STAP, which also alleviates the dynamic target attenuation and the corresponding target Doppler history corruption within the long coherent processing interval (CPI). On this basis, the SCNR performance is further improved by applying coherent accumulation among sub-CPIs, in which the clutter suppression performance degradation and coherent accumulation loss of STAP are alleviated within the sub-CPIs. Numerical and measured results corroborate the effectiveness of ULAT detection with the considered multi-resolution STAP.

Funder

National Natural Science Foundation of China

Key Laboratory Equipment Advanced Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3