Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations

Author:

Tian AnhongORCID,Zhao Junsan,Tang BohuiORCID,Zhu Daming,Fu Chengbiao,Xiong Heigang

Abstract

Soil salinization is an ecological challenge across the world. Particularly in arid and semi-arid regions where evaporation is rapid and rainfall is scarce, both primary soil salinization and secondary salinization due to human activity pose serious concerns. Soil is subject to various human disturbances in Xinjiang in this area. Samples with a depth of 0–10 cm from 90 soils were taken from three areas: a slightly disturbed area (Area A), a moderately disturbed area (Area B), and a severely disturbed area (Area C). In this study, we first calculated the hyperspectral reflectance of five spectra (R, R, 1/R, lgR, 1/lgR, or original, root mean square, reciprocal, logarithm, and reciprocal logarithm, respectively) using different fractional-order differential (FOD) models, then extracted the bands that passed the 0.01 significance level between spectra and total salt content, and finally proposed a partial least squares regression (PLSR) model based on the FOD of the significance level band (SLB). This proposed model (FOD-SLB-PLSR) is compared with the other three PLSR models to predict with precision the total salt content. The other three models are All-PLSR, FOD-All-PLSR, and IOD-SLB-PLSR, which respectively represent PLSR models based on all bands, all fractional-order differential bands, and significance level bands of the integral differential. The simulations show that: (1) The optimal model for predicting total salt content in Area A was the FOD-SLB-PLSR based on a 1.6 order 1/lgR, which provided good predictability of total salt content with a RPD (ratio of the performance to deviation) between 1.8 and 2.0. The optimal model for predicting total salt content in Area B was a FOD-SLB-PLSR based on a 1.7 order 1/R, which showed good predictability for total salt content with RPDs between 2.0 and 2.5. The optimal model for predicting total salt content in Area C was a FOD-SLB-PLSR based on a 1.8 order lgR, which also showed good predictability for total salt content with RPDs between 2.0 and 2.5. (2) Soils subject to various disturbance levels had optimal FOD-SLB-PLSR models located in the higher fractional order between 1.6 and 1.8. This indicates that higher-order FODs have a stronger ability to extract feature data from complex information. (3) The optimal FOD-SLB-PLSR model for each area was superior to the corresponding All-PSLR, FOD-All-PLSR, and IOD-SLB-PLSR models in predicting total salt content. The RPD value for the optimal FOD-SLB-PLSR model in each area compared to the best integral differential model showed an improvement of 9%, 45%, and 22% for Areas A, B, and C, respectively. It further showed that the fractional-order differential model provides superior prediction over the integral differential. (4) The RPD values that provided an optimal FOD-SLB-PLSR model for each area were: Area A (1.9061) < Area B (2.0761) < Area C (2.2892). This indicates that the prediction effect of data processed by fractional-order differential increases with human disturbance increases and results in a higher-precision model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3