Abstract
To solve the problems such as obvious speckle noise and serious spectral distortion when existing fusion methods are applied to the fusion of optical and SAR images, this paper proposes a fusion method for optical and SAR images based on Dense-UGAN and Gram–Schmidt transformation. Firstly, dense connection with U-shaped network (Dense-UGAN) are used in GAN generator to deepen the network structure and obtain deeper source image information. Secondly, according to the particularity of SAR imaging mechanism, SGLCM loss for preserving SAR texture features and PSNR loss for reducing SAR speckle noise are introduced into the generator loss function. Meanwhile in order to keep more SAR image structure, SSIM loss is introduced to discriminator loss function to make the generated image retain more spatial features. In this way, the generated high-resolution image has both optical contour characteristics and SAR texture characteristics. Finally, the GS transformation of optical and generated image retains the necessary spectral properties. Experimental results show that the proposed method can well preserve the spectral information of optical images and texture information of SAR images, and also reduce the generation of speckle noise at the same time. The metrics are superior to other algorithms that currently perform well.
Subject
General Earth and Planetary Sciences
Reference36 articles.
1. Data fusion techniques for multi-sources remotely sensed imagery;Jia;Remote Sens. Technol. Appl.,2000
2. A texture-based fusion scheme to integrate high-resolution satellite SAR and optical images
3. Model-based despeckling and information extraction from SAR images
4. Study on infrared camouflage of landing craft and camouflage effect evaluation;Hua;Infrared Technol.,2008
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献