Validation of COSMIC-2-Derived Ionospheric Peak Parameters Using Measurements of Ionosondes

Author:

Shi Shuangshuang,Li WangORCID,Zhang Kefei,Wu Suqin,Shi Jiaqi,Song Fucheng,Sun PengORCID

Abstract

Although numerous validations for the ionospheric peak parameters values (IPPVs) obtained from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) have been conducted using ionosonde measurements as a reference, comprehensive evaluations of the quality of the COSMIC-2 data are still undesirable, especially under geomagnetic storm conditions. In this study, the IPPVs measured by ionosondes (Ramey, Boa Vista, Sao Luis, Jicamarca, Cachoeira Paulista, and Santa Maria) during the period 1 October 2019 to 31 August 2021, are used to evaluate the quality of COSMIC-2 data over low-latitude regions of the Americas. The results show that the NmF2 (hmF2) from COSMIC-2 agrees well with the ionosonde measurements, and the correlation coefficients for the two sets of data at the above six stations are 0.93 (0.84), 0.91 (0.85), 0.91 (0.88), 0.88 (0.79), 0.96 (0.83), and 0.96 (0.87), respectively. The data quality of COSMIC-2 derived NmF2 is largely dependent on geomagnetic latitude. It was also found that NmF2 derived from COSMIC-2 tends to be underestimated over the stations in Boa Vista and Cachoeira Paulista, which are close to the crests of the equatorial ionization anomaly (EIA), whilst that of the other stations is slightly overestimated. A comparison between COSMIC-measured and ionosonde-derived hmF2 indicates that the former is systematically higher than the latter. In addition, the differences in the two NmF2 datasets derived from COSMIC-2 and ionosonde measurements at night are generally smaller than those of daytime, when the EIA is well developed, and vice versa for hmF2, whose RMSE is slightly smaller during daytime (with the exception of Ramey). Furthermore, NmF2 obtained from COSMIC-2 is shown to perform best in summer at Ramey, Boa Vista, Sao Luis, and Santa Maria, best in winter at Jicamarca and Cachoeira Paulista. Finally, the COSMIC-2 electron densities capture the ionospheric dynamic enhancements under a moderate geomagnetic storm condition very well.

Funder

the National Natural Science Foundations of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3