Mapping and Characterizing Displacements of Landslides with InSAR and Airborne LiDAR Technologies: A Case Study of Danba County, Southwest China

Author:

Xu Qiang,Guo Chen,Dong Xiujun,Li WeileORCID,Lu Huiyan,Fu Hao,Liu Xiaosha

Abstract

Interferometric synthetic aperture radar (InSAR) technology is known as one of the most effective methods for active landslide identification and deformation monitoring in large areas, and thus it is conducive to preventing and mitigating the losses caused by landslides. However, great uncertainty inevitably exists due to influences of complex terrains, dense vegetations, and atmospheric interferences in the southwestern mountainous area of China, and this is associated with false or erroneous judgment during the process of landslide identification. In this study, a landslide identification method is put forward by integrating InSAR technology and airborne light detection and ranging (LiDAR) technology. Via this method, surface deformation characteristics detected by InSAR technology and micro-geomorphic features reflected by LiDAR technology were used to identify and map landslides of large areas. Herein, the method was applied to process 224 Sentinel-1 images covering Danba County and its surrounding areas (540 km2) from October 2014 to September 2020. Firstly, 44 active landslides with total areas of 59 km2 were detected by stacking InSAR technology. Then, major regions up to 135 km2 were validated by data gained from the airborne LiDAR technology. Particularly, several large landslides with lengths and/or widths of more than 2 km were found. Further, the precipitation data were integrated with the above results to analyze the temporal deformation characteristics of three typical landslides from major regions via SBAS InSAR technology. The key findings were as follows: (1) The combination of InSAR and LiDAR technologies could improve the accuracy of landslide detection and identification; (2) there was a significant correlation between temporal deformation characteristics of some landslides and monthly rainfall, with an obvious hysteretic effect existing between the initiation timing of rainfall and that of deformation; (3) the results of this study will be important guidance for the prevention and control of geological hazards in Danba County and areas with similar complex geomorphological conditions by helping effectively identify and map landslides.

Funder

The National Innovation Research Group Science Fund

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Some catastrophic landslides since the twentieth century in the southwest of China

2. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards;Xu;Geomat. Inf. Sci. Wuhan Univ.,2019

3. Understanding and Consideration of Related Issues in Early Identification of Potential Geohaz-ards;Xu;Geomat. Inf. Sci. Wuhan Univ.,2020

4. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China

5. Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3