Quantifying Biochemical Traits over the Patagonian Sub-Antarctic Forests and Their Relation to Multispectral Vegetation Indices

Author:

Taylor-Zavala Richard,Ramírez-Rodríguez OneyORCID,de Armas-Ricard Merly,Sanhueza Harold,Higueras-Fredes FranciscaORCID,Mattar Cristian

Abstract

The effects and consequences of global warming on the productivity of the Patagonian forest are still unknown. The use of Unmanned Aerial Vehicles (UAV) promotes new knowledge of the most pristine and unknown sub-antarctic forests located in Chilean Patagonia. This work presents an initial approach to spatialize biochemicals over the Patagonian forests using ultra-high spatial resolution imagery acquired from UAVs equipped with a multispectral (visible, near-infrared, and thermal) sensor. The images were obtained in multiple flights over the Cerro Castillo National Park (Aysén Region, Chile), and several Vegetation Indices (VIs) were estimated. Leaves of Nothofagus pumilio (Poepp. et Endl.) Krasser (Nothofagaceae) individuals were extracted after the flights and were then used to determine the biochemicals traits of chlorophylls (Chl-a and Chl-b) and carotenoids pigments, as well as the total phenolic content (TPC), total flavonoids content (TFC), and the DPPH radical scavenging assay. Their relationships with multiple VIs was analyzed in order to assess the spatiality of the biochemicals traits in the forest during it most productive phenological stage. Results showed high correlations for the biochemical traits pigments (R2 > 0.75) with the indices DVI, MCARI, and MSAVI1 as the best performing indices, while further spectral availability is needed for significant correlations with biochemicals traits related to the antioxidant capacity. Spatialization of the biochemical traits within UAV imagery was also performed evaluating their representation in the forest. This work allowed us to identify the different spectral behavior of the N. pumilio species, its relation to biochemical traits, and their spatialization, thus presenting the first step to developing a monitoring protocol for the evaluation of the Patagonian forests under the current global warming scenarios in the region.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3