Behaviour of Hybrid Steel and FRP-Reinforced Concrete—ECC Composite Columns under Reversed Cyclic Loading

Author:

Yuan Fang,Chen Liping,Chen Mengcheng,Xu Kaicheng

Abstract

Fibre-reinforced polymer (FRP) is used widely in concrete structures owing to its noncorrosive, light-weight, nonmagnetic, and high tensile-strength properties. However, the FRP-reinforced concrete flexural member exhibits low ductility owing to the linear–elastic property of FRP reinforcement. Hybrid steel—FRP-reinforced concrete members exhibit good strength and ductility under flexure owing to the inelastic deformation of steel reinforcement. The existing investigations have focused on the mechanical behaviours of the hybrid steel—FRP-reinforced flexural members. Only few studies have been reported on the members under combined flexural and compression loads, such as columns, owing to the poor compressive behaviour of FRP bars. We herein propose a new type of hybrid steel—FRP-reinforced concrete—engineered cementitious composite (ECC) composite column with ECC applied to the plastic hinge region and tested it under reversed cyclic loading. The hybrid steel—FRP-reinforced concrete column was also tested for comparison. The influence of matrix type in the plastic hinge region on the failure mode, crack pattern, ultimate strength, ductility, and energy dissipation capacity, of the columns were evaluated systematically. We found that the substitution of concrete with ECC in the plastic hinge zone can prevent the local buckling of FRP bars efficiently, and subsequently improve the strength and ductility of the column substantially.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3