The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America

Author:

Hashemkhani Zolfani SarfarazORCID,Bazrafshan Ramin,Ecer FatihORCID,Karamaşa ÇağlarORCID

Abstract

This study aims to help managers develop a proper strategy and policy for their company’s future. After the global COVID-19 pandemic, developed countries decided to change their production and relocate and re-industrialize. The U.S.’s big electronics and automobile companies are not an exception to this rule. The lithium batteries are the main instrument of mobile phone and electric vehicles. The leading lithium battery supplier for the U.S mobile phone companies is China. Argentina, Bolivia, and Chile (in South America) have some of the largest lithium mines in the world; these countries are known as the lithium triangle. Among the 86 million tonnes of lithium resources worldwide, 49.9 million tonnes exist in this area. The researchers in this study surveyed the best country for constructing a battery for companies in the U.S. Because of the growth of electric vehicles and their use of the lithium battery, the world is facing astronomical prices for lithium. To emphasize this issue and help managers create good policy, this study combined multiple methods. The improved suitability-feasibility-acceptability (SFA) strategy is integrated with the Bayesian best-worst method (BBWM) and measurement of alternatives and rankings according to compromise solution (MARCOS) multicriteria methods to determine the best destination. For comparison, based on the SFA strategy, seven criteria are introduced: commercially viable reserves, national minimum wage, corporate income tax, accessibility to mining companies, accessibility to the waterway, population, and political stability index. The Bayesian BWM analysis reveals that the foremost factor is corporate income tax, whereas MARCOS’s findings indicate that Chile is the best country to construct the lithium battery industry. To verify the proposed approach, a comparison analysis also is performed.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3