A Discrete-Continuous PSO for the Optimal Integration of D-STATCOMs into Electrical Distribution Systems by Considering Annual Power Loss and Investment Costs

Author:

Grisales-Noreña Luis FernandoORCID,Montoya Oscar DaniloORCID,Hernández Jesús C.ORCID,Ramos-Paja Carlos AndresORCID,Perea-Moreno Alberto-JesusORCID

Abstract

Currently, with the quick increase in global population, the energetic crisis, the environmental problematic, and the development of the power electronic devices generated the need to include new technologies for supporting and potentiating electrical distributions systems; Distribution Static Compensators (D-STATCOMs) are highly used for this task due to the advantages that this technology presents: reduction in power loss, operation costs, and chargeability of branches, among others. The possibility to include this kind of technology within the electrical system has shown the need to develop efficient methodologies from the point of view of quality solution, repeatability and processing times by considering operation and investment costs as well as the technical conditions of the electrical grids under a scenario of variable power demand and then representing the real operation of the electrical grid. With the aim to propose a solution for this requirement, this paper presents a new Discrete-Continuous Particle Swarm Optimization (DCPSO) algorithm to solve the problem of the optimal integration of D-STATCOMs into Electrical Distribution Systems (EDSs). In this case, the objective function is the minimization of annual operating costs by using a weighted mono-objective function composed of the annual power loss and the investment cost and by including all constraints associated with the operation of an EDS in a distributed reactive compensation environmentinside the mathematical formulation. In order to evaluate the effectiveness and robustness of the proposed solution method, this study implemented two tests systems (i.e., 33- and 69-bus), as well as four comparison methods, and different considerations related to the inclusion of D-STATCOMs in the EDSs. Furthermore, for evaluating the repeatability of the solution obtained by each solution methods used, each algorithm was executed 100 times in Matlab software. The results obtained demonstrated that the proposed DCPSO/HSA methodology achieved the best trade-off between solution quality and processing time, with low standard deviation values for EDSs of any size.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3