DenSec: Secreted Protein Prediction in Cerebrospinal Fluid Based on DenseNet and Transformer

Author:

Huang Lan,Qu Yanli,He Kai,Wang YanORCID,Shao DanORCID

Abstract

Cerebrospinal fluid (CSF) exists in the surrounding spaces of mammalian central nervous systems (CNS); therefore, there are numerous potential protein biomarkers associated with CNS disease in CSF. Currently, approximately 4300 proteins have been identified in CSF by protein profiling. However, due to the diverse modifications, as well as the existing technical limits, large-scale protein identification in CSF is still considered a challenge. Inspired by computational methods, this paper proposes a deep learning framework, named DenSec, for secreted protein prediction in CSF. In the first phase of DenSec, all input proteins are encoded as a matrix with a fixed size of 1000 × 20 by calculating a position-specific score matrix (PSSM) of protein sequences. In the second phase, a dense convolutional network (DenseNet) is adopted to extract the feature from these PSSMs automatically. After that, Transformer with a fully connected dense layer acts as classifier to perform a binary classification in terms of secretion into CSF or not. According to the experiment results, DenSec achieves a mean accuracy of 86.00% in the test dataset and outperforms the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Development Project of Jilin Province of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3