Abstract
The prediction and smoothing fusion problems in multisensor systems with mixed uncertainties and correlated noises are addressed in the tessarine domain, under Tk-properness conditions. Bernoulli distributed random tessarine processes are introduced to describe one-step randomly delayed and missing measurements. Centralized and distributed fusion methods are applied in a Tk-proper setting, k=1,2, which considerably reduce the dimension of the processes involved. As a consequence, efficient centralized and distributed fusion prediction and smoothing algorithms are devised with a lower computational cost than that derived from a real formalism. The performance of these algorithms is analyzed by using numerical simulations where different uncertainty situations are considered: updated/delayed and missing measurements.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献