Deep Learning for Forecasting Electricity Demand in Taiwan

Author:

Yang Cheng-Hong,Chen Bo-HongORCID,Wu Chih-HsienORCID,Chen Kuo-Chang,Chuang Li-YehORCID

Abstract

According to the World Energy Investment 2018 report, the global annual investment in renewable energy exceeded USD 200 billion for eight consecutive years until 2017. In this paper, a deep-learning-based time-series prediction method, namely a gated recurrent unit (GRU)-based prediction method, is proposed to predict energy generation in Taiwan. Data on thermal power (coal, oil, and gas power), renewable energy (conventional hydropower, solar power, and wind power), pumped hydropower, and nuclear power generation for 1991 to 2020 were obtained from the Bureau of Energy, Ministry of Economic Affairs, Taiwan, and the Taiwan Power Company. The proposed GRU-based method was compared with six common forecasting methods: autoregressive integrated moving average, exponential smoothing (ETS), Holt–Winters ETS, support vector regression (SVR), whale-optimization-algorithm-based SVR, and long short-term memory. Among the methods compared, the proposed method had the lowest mean absolute percentage error and root mean square error and thus the highest accuracy. Government agencies and power companies in Taiwan can use the predictions of accurate energy forecasting models as references to formulate energy policies and design plans for the development of alternative energy sources.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference56 articles.

1. United Nations Energy Mechanism,2022

2. United Nations Sustainable Development Goals,2015

3. Energy Statistics Handbook 2020,2020

4. Sustainable Energy Policy Framework;Yuan,2008

5. 108_109 National Electricity Supply and Demand Report,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3