A Novel Learning Algorithm Based on Bayesian Statistics: Modelling Thermostat Adjustments for Heating and Cooling in Buildings

Author:

Ramallo-González Alfonso P.,González-Vidal AuroraORCID,Terroso-Saenz FernandoORCID,Skarmeta-Gómez Antonio F.ORCID

Abstract

The temperature of indoor spaces is at the core of highly relevant topics such as comfort, productivity and health. In conditioned spaces, this temperature is determined by thermostat preferences, but there is a lack of understanding of this phenomenon as a time-dependent magnitude. In addition to this, there is scientific evidence that the mental models of how users understand the operation of the billions of air-conditioning machines around the world are incorrect, which causes systems to ‘compensate’ for temperatures outside by adjusting the thermostat, which leads to erratic changes on set-points over the day. This paper presents the first model of set-point temperature as a time-dependent variable. Additionally, a new mathematical algorithm was developed to complement these models and make possible their identification on the go, called the life Bayesian inference of transition matrices. Data from a total of 75 + 35 real thermostats in two buildings for more than a year were used to validate the model. The method was shown to be highly accurate, fast, and computationally trivial in terms of time and memory, representing a change in the paradigm for smart thermostats.

Funder

European Commission

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Transfer Learning for Energy Efficiency in Smart Buildings;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2023-05-20

2. PLEIAData: consumption, HVAC, temperature, weather and motion sensor data for smart buildings applications;Scientific Data;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3