Convergence of a Class of Delayed Neural Networks with Real Memristor Devices

Author:

Di Marco MauroORCID,Forti MauroORCID,Moretti RiccardoORCID,Pancioni LucaORCID,Innocenti GiacomoORCID,Tesi AlbertoORCID

Abstract

Neural networks with memristors are promising candidates to overcome the limitations of traditional von Neumann machines via the implementation of novel analog and parallel computation schemes based on the in-memory computing principle. Of special importance are neural networks with generic or extended memristor models that are suited to accurately describe real memristor devices. The manuscript considers a general class of delayed neural networks where the memristors obey the relevant and widely used generic memristor model, the voltage threshold adaptive memristor (VTEAM) model. Due to physical limitations, the memristor state variables evolve in a closed compact subset of the space; therefore, the network can be mathematically described by a special class of differential inclusions named differential variational inequalities (DVIs). By using the theory of DVI, and the Lyapunov approach, the paper proves some fundamental results on convergence of solutions toward equilibrium points, a dynamic property that is extremely useful in neural network applications to content addressable memories and signal-processing in real time. The conditions for convergence, which hold in the general nonsymmetric case and for any constant delay, are given in the form of a linear matrix inequality (LMI) and can be readily checked numerically. To the authors knowledge, the obtained results are the only ones available in the literature on the convergence of neural networks with real generic memristors.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3