An Efficient Method for Breast Mass Classification Using Pre-Trained Deep Convolutional Networks

Author:

Al-Mansour Ebtihal,Hussain MuhammadORCID,Aboalsamh Hatim A.,Fazal-e-Amin ORCID

Abstract

Masses are the early indicators of breast cancer, and distinguishing between benign and malignant masses is a challenging problem. Many machine learning- and deep learning-based methods have been proposed to distinguish benign masses from malignant ones on mammograms. However, their performance is not satisfactory. Though deep learning has been shown to be effective in a variety of applications, it is challenging to apply it for mass classification since it requires a large dataset for training and the number of available annotated mammograms is limited. A common approach to overcome this issue is to employ a pre-trained model and fine-tune it on mammograms. Though this works well, it still involves fine-tuning a huge number of learnable parameters with a small number of annotated mammograms. To tackle the small set problem in the training or fine-tuning of CNN models, we introduce a new method, which uses a pre-trained CNN without any modifications as an end-to-end model for mass classification, without fine-tuning the learnable parameters. The training phase only identifies the neurons in the classification layer, which yield higher activation for each class, and later on uses the activation of these neurons to classify an unknown mass ROI. We evaluated the proposed approach using different CNN models on the public domain benchmark datasets, such as DDSM and INbreast. The results show that it outperforms the state-of-the-art deep learning-based methods.

Funder

National Plan for Science, Technology and Innovation, King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3