Abstract
Laser speckle contrast imaging (LSCI) is a powerful visualization tool for quantifying blood flow in tissues, providing simplicity of configuration, ease of use, and intuitive results. With recent advancements, smartphone and camera technologies are suitable for the development of smartphone-based LSCI applications for point-of-care (POC) diagnosis. A smartphone-based portable LSCI endoscope system was validated for POC diagnosis of vascular disorders. The endoscope consisted of compact LED and laser illumination, imaging optics, and a flexible fiberscope assembled in a 3D-printed hand-held cartridge for access to body cavities and organs. A smartphone’s rear camera was mounted thereto, enabling endoscopy, LSCI image acquisition, and processing. Blood flow imaging was calibrated in a perfused tissue phantom consisting of a microparticle solution pumped at known rates through tissue-mimicking gel and validated in a live rat model of BBN-induced bladder cancer. Raw LSCI images successfully visualized phantom flow: speckle flow index showed linearity with the pump flow rate. In the rat model, healthy and cancerous bladders were distinguishable in structure and vasculature. The smartphone-based low-cost portable mobile endoscope for monitoring blood flow and perfusion shows promise for preclinical applications and may be suitable for primary diagnosis at home or as a cost-effective POC testing assay.
Funder
National Research Foundation of Korea
Ministry of Trade, Industry and Energy
Ministry of Health and Welfare
Subject
Clinical Biochemistry,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献