Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry

Author:

Chen Wei-LongORCID,Chuang Han-ShengORCID

Abstract

Brownian motion, which is a natural phenomenon, has attracted numerous researchers and received extensive studies over the past decades. The effort contributes to the discovery of optical diffusometry, which is commonly used for micro/nano particle sizing. However, the analysis uncertainty caused by the coupling relationship among particle diameter, temperature, and fluid viscosity usually poses a barrier to precise measurement. Preventing random background noise becomes the key to achieving a high level of accuracy in diffusometry detection. Recently, Janus particles have become known as an ideal tool for resolving the rotational Brownian motion. Followed by our previous study, the rotational Brownian motion and the translational Brownian motion can be separately measured using the Janus particles. Accordingly, a simple self-viscosity and temperature-compensated technique based on the delicate removal of temperature and fluid viscosity variations through particle tracking was first proposed in this study. Consequently, the translational Brownian motion was expressed in terms of particle trajectory, whereas the rotational Brownian motion was expressed in terms of the blinking signal from the Janus particles. The algorithm was verified simulatively and experimentally in temperature (10 °C to 40 °C) and viscosity-controlled (1 mPa·s to 5 mPa·s) fields. In an evaluation of biosensing for a target protein, IFN-γ, the limit of detection of the proposed self-compensated diffusometry reached 0.45 pg/mL, whereas its uncertainties of viscosity and temperature were 96 and 15-fold lower than the pure the rotational Brownian motion counterpart, respectively. The results indicated the low-uncertainty and high-accuracy biosensing capability resulting from the self-viscosity and temperature-compensated technique. This research will provide a potential alternative to future similar bead-based immunosensing, which requires ultra-high stability and sensitivity.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3