Biomimetic Self-Adhesive Structures for Wearable Sensors

Author:

Chen Feihu,Han Liuyang,Dong Ying,Wang Xiaohao

Abstract

Inspired by the adhesion ability of various organisms in nature, the research of biomimetic adhesion has shown a promising application prospect in fields such as manipulators, climbing robots and wearable medical devices. In order to achieve effective adhesion between human skin and a variety of wearable sensors, two natural creatures, octopus and mussel, were selected for bio-imitation in this paper. Through imitating the octopus sucker structure, a micro-cavity array with a large inner cavity and small outer cavity was designed. The fabrication was completed by double-layer adhesive photolithography and PDMS molding, and the adhesion capacity of the structure was further enhanced by the coating of thermal responsive hydrogel PNIPAM. The adhesive force of 3.91 N/cm2 was obtained in the range of the human body temperature. PDA-Lap-PAM hydrogel was prepared by combining mussel foot protein (Mfps) with nano-clay (Lap) as biomimetic mussel mucus. It was found that 0.02 g PDA-Lap-PAM hydrogel can obtain about 2.216 N adhesion, with good hydrophilicity. Through oxygen plasma surface treatment and functional silane surface modification, the fusion of the PDMS film with biomimetic octopus sucker structure and the biomimetic mussel mucus hydrogel patch was realized. The biomimetic octopus sucker structure was attached to the human skin surface to solve the problem of shape-preserving attachment, and the biomimetic mussel mucus hydrogel was attached to the sensor surface to solve the problem of sensor surface adaptation. The fusion structure was used to attach a rigid substrate piezoelectric sensor to the skin for a human pulsewave test. The results verified the self-adhesion feasibility of wearable sensors with biomimetic structures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference31 articles.

1. Application and prospect of new bionic materials;Wang;Sci. Technol. Rev.,2019

2. Petal Effect:  A Superhydrophobic State with High Adhesive Force

3. Super-hydrophobicity of aligned polymer nanopole films;Jin;Chem. J. Chin. Univ. Chin.,2004

4. “Petal Effect” on Surfaces Based on Lycopodium: High-Stick Surfaces Demonstrating High Apparent Contact Angles

5. Robust adhesion of flower-like few-layer graphene nanoclusters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3