An Optimized and Scalable Algorithm for the Fast Convergence of Steady 1-D Open-Channel Flows

Author:

Goffin Louis,Dewals Benjamin,Erpicum SebastienORCID,Pirotton MichelORCID,Archambeau PierreORCID

Abstract

Calculating an open-channel steady flow is of main interest in many situations; this includes defining the initial conditions for the unsteady simulation or the computation of the water level for a given discharge. There are several applications that require a very short computation time in order to envisage a large number of runs, for example, uncertainty analysis or optimization. Here, an optimized algorithm was implemented for the fast and efficient computation of a 1-D steady flow. It merges several techniques: a pseudo-time version of the Saint-Venant equations, an evolutionary domain and the use of a non-linear Krylov accelerator. After validation of this new algorithm, we also showed that it performs well in scalability tests. The computation cost evolves linearly with the number of nodes. This was also corroborated when the execution time was compared to that obtained by the non-linear solver, CasADi. A real-world example using a 9.5 km stretch of river confirmed that the computation times were very short compared to a standard time-dependent computation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3