Mechanical Properties of Thermally Annealed Cu/Ni and Cu/Al Multilayer Thin Films: Solid Solution vs. Intermetallic Strengthening

Author:

Zhou Yang1,Wang Junlan1

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

In this study, Cu/Ni and Cu/Al multilayers, with individual layer thickness varying from 25 nm to 200 nm, and co-sputtered Cu-Ni and Cu-Al single layer films were deposited at room temperature via magnetron sputtering and further annealed from 100 °C to 300 °C. The mechanical and microstructural properties of the as-deposited and annealed samples were characterized by nanoindentation, x-ray diffraction, and scanning electron microscopy. Both multilayer systems exhibit an increase in hardness with increasing annealing temperature. However, the Cu/Ni system shows a gradual and moderate hardness increase (up to 30%) from room temperature to 300 °C, while the Cu/Al system displays a sharp hardness surge (~150%) between 125 °C and 200 °C. The co-sputtered Cu-Ni and Cu-Al samples consistently demonstrate higher hardness than their multilayered counterparts, albeit with distinctly different temperature dependence—the hardness of Cu-Ni increases with annealing temperature while Cu-Al maintains a constant high hardness throughout the entire temperature range. The distinct thermal strengthening mechanisms observed in the two metallic multilayer systems can be ascribed to the formation of solid solutions in Cu/Ni and the precipitation of intermetallic phases in Cu/Al. This study highlights the unique advantage of intermetallic strengthening in metallic multilayer systems.

Funder

University of Washington Royal Research Fun

University of Washington Molecular Analysis Facility

Molecular Engineering & Sciences Institute

Clean Energy Institute

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3