First-Principles Investigation on the Adsorption and Diffusion of Oxygen at the B2(110)–O(001) Interface in Ti2AlNb Alloys

Author:

Zhang Ming1,Xiang Hongping1,Xu Lin2,Feng Aihan1ORCID,Qu Shoujiang1,Chen Daolun3ORCID

Affiliation:

1. Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China

2. Biomaterials R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China

3. Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

The adsorption and diffusion of oxygen at the B2(110)[1¯11]||O(001)[11¯0] interface in Ti2AlNb alloys were investigated via first-principles calculations. Only a 2.6% interfacial mismatch indicates that B2(110)–O(001) is basically a stable coherent interface. The calculated adsorption energies and diffusion energy barriers show that oxygen prefers to occupy the Ti-rich interstitial sites, and once trapped, it hardly diffuses to other interstitial sites, thus promoting the preferential formation of Ti oxides. Under the premise of a Ti-rich environment, a Nb-rich environment is more favorable for oxygen adsorption than an Al-rich environment. The electronic structures suggest that O 2p orbitals mainly occupy the energy region below −5 eV, bonding with its coordinated atoms of Ti, Al, and Nb. However, Al 3p and Nb 4d orbitals near the Fermi level couple with sparsely distributed O 2p orbitals, forming anti-bonding, which is not conducive to oxygen adsorption. Because Nb 4d electrons are more localized than Al 3p electrons are, Nb–O anti-bonding is weaker. O–Ti has almost no contribution to anti-bonding, suggesting good bonding between them. This is consistent with the experimental observations that TiO2 is the main oxidation product.

Funder

National Natural Science Foundations of China

Zhuhai Science Technology Department Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3