Hybrid Single Lap Joints between 3D Printed Titanium Lattices and CFRP Composites: Experimental and Numerical Insights

Author:

Corrado Andrea1ORCID,De Biasi Raffaele1ORCID,Rigotti Daniele1ORCID,Stecca Fabrizio2,Pegoretti Alessandro1ORCID,Benedetti Matteo1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Trento, 38123 Trento, Italy

2. Novation Tech S.P.A., 31044 Montebelluna, Italy

Abstract

In the contemporary emphasis on weight reduction, the utilization of advanced materials like Carbon Fiber Reinforced Polymers (CFRPs) and cutting-edge technologies such as 3D printing of metal is increasingly crucial. This study delves into the junction of CFRP and titanium, aiming to conduct Single Lap shear tests on specimens featuring a co-lamination of long fiber composite onto a metal lattice structure. Different specimens with different dimensions of the Simple Cubic (SC) unit cell were subjected to testing. A microscope investigation facilitated an exploration of junction failure and epoxy resin infiltration into the lattice substrate. Employing an efficient 2D Finite Element Model, the homogenization process yielded theoretical models underestimating the Young Modulus by approximately 10% compared to real specimens. Despite the challenges in bonding titanium and CFRP, the novel junction exhibited a shear stress of 17.25 MPa, which is nearly equivalent to those of a co-lamination between sandblasted steel and CFRP, that is 17.15 MPa.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3